Schwarz rearrangement does not decrease the energy for the pseudo p-Laplacian operator

Mohammed MOUSSA

Abstract: It is well known that the Schwarz symmetrization decrease the energy for the p-Laplacian operator, i.e

$$\int_{\Omega} |\nabla u|^p \, dx \geq \int_{\Omega} |\nabla u^*|^p \, dx.$$

where u^* is the Schwarz rearranged function of u, for appropriate u and Ω. In this note, we shall prove that the Schwarz rearrangement does not decrease the energy for the pseudo p-Laplacian operator, that is, there exist a bounded domain $\Omega \subset \mathbb{R}^N$ and a function $u \in W^{1,p}_0(\Omega)$ such that

$$\int_{\Omega^*} \left(\sum_{i=1}^n \left| \frac{\partial u^*}{\partial x_i} \right|^p \right) \, dx \geq \int_{\Omega} \left(\sum_{i=1}^n \left| \frac{\partial u}{\partial x_i} \right|^p \right) \, dx.$$

Key Words: Schwarz symmetrization, pseudo p-Laplacian operator.

Contents

1 Introduction 49
 1.1 A catalogue of rearrangement 49
 1.2 Some results for Schwarz symmetrization .. 50

2 Main result 51

1. Introduction

The rearrangement method is defined by replacing a given function u by a related function u^* which has some properties like monotonicity or symmetry. The function u^* can be reconstructed from its level sets

$$\Omega_c = \{ x \in \Omega \mid u(x) \geq c \}.$$

1.1. A CATALOGUE OF REARRANGEMENT. In the litterature we find many type of rearrangement,

1. circular and spherical symmetrization,
2. monotone decreasing rearrangement in direction y,
3. radial symmetrization,
4. Schwarz symmetrization,

2000 Mathematics Subject Classification: 35HXX
5. Steiner symmetrization in direction y.

More details of rearrangement can be found in [3,4,5,7]. In this note we are interested only by Schwarz symmetrization (the most frequently used kind symmetrization). Hence, for a Lebesgue measurable set $D \subset \mathbb{R}^n$ we define the Schwarz symmetrization D^* of D by

$$D^* = \begin{cases} B(0, R) & \text{if } D \neq \emptyset \\ \emptyset & \text{if } D = \emptyset \end{cases}$$

where $B(0, R)$ is a ball of \mathbb{R}^n with center in the origin with same $n-\text{dim.}$ Lebesgue measure and for a Lipschitz continuous function u, the rearranged function u^* is defined as follows

$$u^*(x) = \sup \{ c \in \mathbb{R} \mid x \in \Omega^*_c \} \text{ for } x \in \Omega^*$$

1.2. Some results for Schwarz symmetrization. One of the first powerful applications of Schwarz symmetrization was the proof of the Krahn-Faber inequality [6]: Among all fixed membranes of given area, the circular one has the lowest principal eigenvalue. This was shown by looking at

$$\lambda_1(\Omega) = \min_{u \in W^{1,2}_0(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2}{\|u\|^2}.$$

One can easily conclude, with the two following propositions, that $\lambda_1(\Omega) \geq \lambda_1(\Omega^*)$.

Proposition 1.1 ([1,5,7]) For every continuous mapping $F : \mathbb{R}^+ \to \mathbb{R}$ and every nonnegative function $u : \Omega \to \mathbb{R}^+$, then,

$$\int_{\Omega} F(u) \, dx = \int_{\Omega^*} F(u^*) \, dx.$$

Proposition 1.2 ([1,5,7]) For $u \neq 0 \in W^{1,p}_0(\Omega)$ and $p > 1$, we have

$$E_p(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx \geq \frac{1}{p} \int_{\Omega^*} |\nabla u^*|^p \, dx = E_p(u^*)$$

Then, Schwarz symmetrization decrease the potential energy $E_p(u)$ of p-Laplacian operator $\Delta_p u$ defined by

$$\Delta_p u = \text{div} \left(|\nabla u|^{p-2} \nabla u \right).$$

The same question is posed for the so called pseudo p-Laplacian operator defined by

$$\Delta'_p u = \text{div} \left(\sum_{i=1}^{n} \left| \frac{\partial u}{\partial x_i} \right|^{p-2} \frac{\partial u}{\partial x_i} \right).$$

We show, in this paper, that the answer is negative by exhibiting an explicit function with Schwarz’s symmetrization does not decrease the energy for pseudo p-Laplacian operator.
2. Main result

Theorem 2.1 The Schwarz rearrangement does not decrease the energy for the pseudo p-Laplacian operator, that is, there exist a bounded domain $\Omega \subset \mathbb{R}^n$ and a function $u \in W_0^{1,p}(\Omega)$ such that

$$\sum_{i=1}^{n} \int_{\Omega^*} \left| \frac{\partial u^*}{\partial x_i} \right|^p \, dx \geq \sum_{i=1}^{n} \int_{\Omega} \left| \frac{\partial u}{\partial x_i} \right|^p \, dx. \quad (1)$$

where Ω^* and u^* are the Schwarz rearrangement of Ω and u respectively.

Proof. Let

$$\Omega = \{ (x_1, x_2) \in \mathbb{R}^2 \mid 0 \leq |x_1| + |x_2| \leq \sqrt{\pi} \} \quad \text{and} \quad u(x_1, x_2) = \sqrt{\pi} - (|x_1| + |x_2|),$$

u is a Lipschitz continuous function that $\Omega \in W_0^{1,p}(\Omega)$. Then the Schwarz rearrangement of Ω is $\Omega^* = B(0, \sqrt{2})$.

Level sets of u are given by

$$\Omega_c = \{ (x_1, x_2) \in \mathbb{R}^2 \mid |x_1| + |x_2| < \sqrt{\pi} - c \}.$$

Then, $|\Omega_c| = \text{meas}(\Omega_c) = 2(\sqrt{\pi} - c)^2$, so

$$u^*(x_1, x_2) = \sqrt{\pi} - \sqrt{\frac{\pi}{2}}(x_1^2 + x_2^2)^{\frac{1}{2}}.$$

Now we have

$$\left| \frac{\partial u}{\partial x_1} \right| = 1 = \left| \frac{\partial u}{\partial x_2} \right|,$$

then,

$$\sum_{i=1}^{2} \int_{\Omega} \left| \frac{\partial u}{\partial x_i} \right|^p \, dx = 2\text{meas}(\Omega) = 4\pi \quad (2)$$

in the other hand,

$$\left| \frac{\partial u^*}{\partial x_1} \right| = \sqrt{\frac{\pi}{2}} \frac{|x_1|}{(x_1^2 + x_2^2)^{\frac{1}{2}}} \quad \text{and} \quad \left| \frac{\partial u^*}{\partial x_2} \right| = \sqrt{\frac{\pi}{2}} \frac{|x_2|}{(x_1^2 + x_2^2)^{\frac{1}{2}}}$$

by passing to polar coordinates we obtain

$$\sum_{i=1}^{2} \int_{\Omega^*} \left| \frac{\partial u^*}{\partial x_i} \right|^p \, dx = \left(\frac{\pi}{2} \right)^{\frac{p}{2}} \left(\int_{0}^{2\pi} |\cos \theta|^p \, d\theta \int_{0}^{\sqrt{2}} r \, dr + \int_{0}^{2\pi} |\sin \theta|^p \, d\theta \int_{0}^{\sqrt{2}} r \, dr \right)$$

$$= \left(\frac{\pi}{2} \right)^{\frac{p}{2}} \left(\int_{0}^{2\pi} |\cos \theta|^p \, d\theta + \int_{0}^{2\pi} |\sin \theta|^p \, d\theta \right) \left[\frac{1}{2} r^2 \right]_{0}^{\sqrt{2}}$$

$$= 4 \left(\frac{\pi}{2} \right)^{\frac{p}{2}} \left(\int_{0}^{\pi} |\cos \theta|^p \, d\theta + \int_{0}^{\pi} |\sin \theta|^p \, d\theta \right)$$

$$= 8 \left(\frac{\pi}{2} \right)^{\frac{p}{2}} \int_{0}^{\pi} |\sin \theta|^p \, d\theta \left(\int_{0}^{\pi} |\cos \theta|^p \, d\theta = \int_{0}^{\pi} |\sin \theta|^p \, d\theta \right)$$
we have used the following equality
\[
\int_0^{2\pi} |\cos \theta|^p \, d\theta = \int_0^\pi |\sin \theta|^p \, d\theta
\]
\[
= \int_0^\pi |\sin \theta|^p \, d\theta + \int_\pi^{2\pi} |\sin \theta|^p \, d\theta
\]
\[
= 2 \int_0^\pi |\sin \theta|^p \, d\theta \quad \text{(put in the second integral } \theta' = \theta - \pi)\]
\[
= 2 \left(\int_0^{\pi/2} |\sin \theta|^p \, d\theta + \int_{\pi/2}^{\pi} |\sin \theta|^p \, d\theta \right)
\]
\[
= 2 \left(\int_0^{\pi/2} |\sin \theta|^p \, d\theta + \int_0^{\pi/2} |\sin \theta|^p \, d\theta \right) \quad \text{(put in the second integral } \theta' = \pi - \theta)\]
\[
= 4 \int_0^{\pi/2} |\sin \theta|^p \, d\theta,
\]
so,
\[
\sum_{i=1}^{2} \int_{\Omega_i} \left| \frac{\partial u^*}{\partial x_i} \right|^p \, dx = 8 \left(\frac{\pi}{2} \right)^{\frac{p}{2}} \int_0^{\pi/2} |\sin \theta|^p \, d\theta \quad \text{(3)}
\]
the integral in the right member of equation (3) is given by the well known Wallis formula \[2\] (page : 15)
\[
\int_0^{\pi/2} |\sin \theta|^p \, d\theta = \frac{\sqrt{\pi}}{2} \frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2} + 1\right)}.
\]
Finally,
\[
\sum_{i=1}^{2} \int_{\Omega_i} \left| \frac{\partial u^*}{\partial x_i} \right|^p \, dx = 4 \left(\frac{\pi}{2} \right)^{\frac{p}{2}} \sqrt{\pi} \frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2} + 1\right)} \quad \text{(4)}
\]
the function \(\Gamma(\alpha)\) is increasing for \(\alpha \geq \frac{3}{2}\) and \(\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)\) for all \(\alpha > -1\) so,
\[
\frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2} + 1\right)} \geq \frac{\Gamma\left(\frac{p}{2}\right)}{\frac{p}{2} \Gamma\left(\frac{p}{2}\right)} = \frac{2}{p},
\]
applying equation (4) to get
\[
\sum_{i=1}^{2} \int_{\Omega_i} \left| \frac{\partial u^*}{\partial x_i} \right|^p \, dx \geq \frac{8}{p} \left(\frac{\pi}{2} \right)^{\frac{p}{2}} \sqrt{\pi}
\]
then the inequality
\[
\sum_{i=1}^{2} \int_{\Omega_i} \left| \frac{\partial u^*}{\partial x_i} \right|^p \, dx \geq \frac{2}{p} \sum_{i=1}^{2} \int_{\Omega} \left| \frac{\partial u}{\partial x_i} \right|^p \, dx
\]
is verified if
\[
\frac{8}{p} \left(\frac{\pi}{2} \right)^{\frac{p}{2}} \sqrt{\pi} \geq 4\pi
\]
The pseudo p-Laplacian operator

which is equivalent to

$$\left(\frac{\pi}{2}\right)^{\frac{p}{2}} - \frac{p}{2}\sqrt{\pi} \geq 0. \quad (5)$$

An elementary study of the function $(x = \frac{p}{2})$

$$f(x) = \left(\frac{\pi}{2}\right)^x - x\sqrt{\pi}$$

shows that f is strictly increasing in $[\frac{1}{\ln 2}, +\infty]$. Equation (5) is then established if $f\left(\frac{p}{2}\right) \geq 0$, that is $p \geq p_c$ where p_c is defined by $f\left(\frac{p_c}{2}\right) = 0$. Mean value theorem shows that $p_c \in [9, 10]$. Consequently, for all $p \geq 10$

$$\sum_{i=1}^{2} \int_{\Omega} \left| \frac{\partial u^*}{\partial x_i} \right|^p dx \geq \sum_{i=1}^{2} \int_{\Omega} \left| \frac{\partial u}{\partial x_i} \right|^p dx.$$

Conclusion: the Schwarz rearrangement does not decrease the energy for the pseudo p-Laplacian operator like it does for p-Laplacian operator.

References

Mohammed MOUSSA
Département de mathématiques
Université Ibn Tofail, Kénitra
Maroc
mohammed.moussa09@gmail.com