The semi normed space defined by entire sequences

N. Subramanian, K. Chandrasekhara Rao and K. Balasubramanian

Abstract: In this paper we introduce the sequence spaces $\Gamma(p, \sigma, q, s)$, $\Lambda(p, \sigma, q, s)$ and define a semi normed space (X, q), semi normed by q. We study some properties of these sequence spaces and obtain some inclusion relations.

Key Words: Entire sequence, Analytic sequence, Invariant mean, Semi norm.

Contents

1 Introduction 37
2 Definitions and Preliminaries 38
3 Main Results 39

1. Introduction

A complex sequence, whose k^{th} term is x_k, is denoted by $\{x_k\}$ or simply x. Let ϕ be the set of all finite sequences. A sequence $x = \{x_k\}$ is said to be analytic if $\sup_k |x_k|^s < \infty$. The vector space of all analytic sequences will be denoted by Λ.

A sequence x is called entire sequence if $\lim_{k \to \infty} |x_k|^s = 0$. The vector space of all entire sequences will be denoted by Γ.

Let σ be a one-one mapping of the set of positive integers into itself such that $\sigma m(n) = \sigma(\sigma m(n) - 1)$, $m = 1, 2, 3, \ldots$.

A continuous linear functional ϕ on Λ is said to be an invariant mean or a σ-mean if and only if (1) $\phi(x) \geq 0$ when the sequence $x = (x_n)$ has $x_n \geq 0$ for all n (2) $\phi(e) = 1$ where $e = (1, 1, 1, \ldots)$ and (3) $\phi(\{x_n(n)\}) = \phi(\{x_n\})$ for all $x \in \Lambda$. For certain kinds of mappings σ, every invariant mean ϕ extends the limit functional on the space C of all real convergent sequences in the sense that $\phi(x) = \lim_{n \to \infty} x_n$ for all $x \in C$. Consequently $C \subset V_\sigma$, where V_σ is the set of analytic sequences all of those σ-means are equal.

If $x = (x_n)$, set $Tx = (T_x)^{1/n} = (x_\sigma(n))$. It can be shown that $V_\sigma = \{x = (x_n) : m \lim_{n \to \infty} t_{mn}(x_n)^{1/n} = L \text{ uniformly in } n, L = \sigma - n \lim_{n \to \infty} (x_n)^{1/n}\}$

where

$$t_{mn}(x) = \frac{(x_n + T_{mx} + \cdots + T^m x_n)^{1/n}}{m + 1} \quad (1)$$

Given a sequence $x = \{x_k\}$ its n^{th} section is the sequence $x^{(n)} = \{x_1, x_2, \ldots, x_n, 0, 0, \ldots\}$, $\delta^{(n)} = \{0, 0, \ldots, 1, 0, 0, \ldots\}$, 1 in the n^{th} place and zeros elsewhere. An FK-space

2000 Mathematics Subject Classification: 46A45, 46B45
2. Definitions and Preliminaries

Definition 2.1 The space consisting of all those sequences \(x \) in \(w \) such that \(\left(|x_k|^{1/k} \right) \rightarrow 0 \) as \(k \rightarrow \infty \) is denoted by \(\Gamma \). In other words \(\left(|x_k|^{1/k} \right) \) is a null sequence. \(\Gamma \) is called the space of entire sequences. The space \(\Gamma \) is a metric space with the metric \(d(x, y) = \left\{ \sup_k \left(|x_k - y_k|^{1/k} \right) : k = 1, 2, 3, \ldots \right\} \) for all \(x = \{x_k\} \) and \(y = \{y_k\} \) in \(\Gamma \).

Definition 2.2 The space consisting of all those sequences \(x \) in \(w \) such that \(\left(\sup_k \left(|x_k|^{1/k} \right) \right) < \infty \) is denoted by \(\Lambda \). In other words \(\left(\sup_k \left(|x_k|^{1/k} \right) \right) \) is a bounded sequence.

Definition 2.3 Let \(p, q \) be semi norms on a vector space \(X \). Then \(p \) is said to be stronger than \(q \) if whenever \((x_n) \) is a sequence such that \(p(x_n) \rightarrow 0 \), then also \(q(x_n) \rightarrow 0 \). If each is stronger than the other, then \(p \) and \(q \) are said to be equivalent.

Lemma 2.4 Let \(p \) and \(q \) be semi norms on a linear space \(X \). Then \(p \) is stronger than \(q \) if and only if there exists a constant \(M \) such that \(q(x) \leq Mp(x) \) for all \(x \in X \).

Definition 2.5 A sequence space \(E \) is said to be solid or normal if \((\alpha_k x_k) \in E \) whenever \((x_k) \in E \) and for all sequences of scalars \((\alpha_k) \) with \(|\alpha_k| \leq 1 \), for all \(k \in N \).

Definition 2.6 A sequence space \(E \) is said to be monotone if it contains the canonical pre-images of all its step spaces.

Remark 2.7 From the above two definitions, it is clear that a sequence space \(E \) is solid implies that \(E \) is monotone.

Definition 2.8 A sequence \(E \) is said to be convergence free if \((y_k) \in E \) whenever \((x_k) \in E \) and \(x_k = 0 \) implies that \(y_k = 0 \).

Let \(p = (p_k) \) be a sequence of positive real numbers with \(0 < p_k < \sup p_k = G \). Let \(D = \text{Max}(1, 2^{G-1}) \). Then for \(a_k, b_k \in C \), the set of complex numbers for all \(k \in N \) we have
\[
|a_k + b_k|^{1/k} \leq D \left\{ |a_k|^{1/k} + |b_k|^{1/k} \right\}.
\]

(2)

Let \((X, q)\) be a semi normed space over the field \(C \) of complex numbers with the semi norm \(q \). The symbol \(\Lambda(X) \) denotes the space of all analytic sequences defined over \(X \). We define the following sequence spaces:
\[
\Lambda(p, \sigma, q, s) = \left\{ x \in \Lambda(X): \sup_{n,k} k^{-s} \left[q \left(|x_{\sigma(n)}|^{1/k} \right) \right]^{p_k} < \infty \text{uniformly in } n \geq 0, s \geq 0 \right\}
\]
Theorem 3.1 \(\Gamma(p, \sigma, q, s) \) is a linear space over the set of complex numbers.

Proof: The proof is easy, so omitted.

Theorem 3.2 \(\Gamma(p, \sigma, q, s) \) is a paranormed space with

\[
g^*(x) = \left\{ \sup_{k \geq 1} k^{-s} \left[q \left(|x_{\sigma^k(n)}|^{1/k} \right) \right] \text{ uniformly in } n > 0 \right\}
\]

where \(H = \max(1, \sup_k p_k) \).

Proof: Clearly \(g(x) = g(-x) \) and \(g(\theta) = 0 \), where \(\theta \) is the zero sequence. It can be easily verified that \(g(x + y) \leq g(x) + g(y) \). Next \(x \to \theta, \lambda \) fixed implies \(g(\lambda x) \to 0 \). Also \(x \to \theta \) and \(\lambda \to 0 \) implies \(g(\lambda x) \to 0 \). The case \(\lambda \to 0 \) and \(x \) fixed implies that \(g(\lambda x) \to 0 \) follows from the following expressions.

\[
g(\lambda x) = \left\{ (|\lambda| r)^{p_m/H} \sup_{k \geq 1} k^{-s} \left[q \left(|x_{\sigma^k(n)}|^{1/k} \right) \right] , \text{ uniformly in } n, m \in N \right\}
\]

where \(r = \frac{1}{|\lambda|} \). Hence \(\Gamma(p, \sigma, q, s) \) is a paranormed space. This completes the proof.

Theorem 3.3 \(\Gamma(p, \sigma, q, s) \cap \Lambda(p, \sigma, q, s) \subseteq \Gamma(p, \sigma, q, s) \).

Proof: The proof is easy, so omitted.

Theorem 3.4 \(\Gamma(p, \sigma, q, s) \subset \Lambda(p, \sigma, q, s) \).

Proof: The proof is easy, so omitted.

Remark 3.1 Let \(q_1 \) and \(q_2 \) be two semi norms on \(X \), we have

(i) \(\Gamma(p, \sigma, q_1, s) \cap \Gamma(p, \sigma, q_2, s) \subseteq \Gamma(p, \sigma, q_1 + q_2, s) \);

(ii) If \(q_1 \) is stronger than \(q_2 \), then \(\Gamma(p, \sigma, q_1, s) \subseteq \Gamma(p, \sigma, q_2, s) \);

(iii) If \(q_1 \) is equivalent to \(q_2 \), then \(\Gamma(p, \sigma, q_1, s) = \Gamma(p, \sigma, q_2, s) \).

Theorem 3.5 (i) Let \(0 \leq p_k \leq r_k \) and \(\left\{ \frac{r_k}{p_k} \right\} \) be bounded. Then \(\Gamma(r, \sigma, q, s) \subset \Gamma(p, \sigma, q, s) \);

(ii) \(s_1 \leq s_2 \) implies \(\Gamma(p, \sigma, q, s_1) \subset \Gamma(p, \sigma, q, s_2) \).
Proof of (i):

Let

\[x \in \Gamma(r, \sigma, q, s) \]

(3)

\[k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right)^{r_k} \right] \rightarrow 0 \text{ as } k \rightarrow \infty \]

(4)

Let \(t_k = k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right)^{r_k} \right] \) and \(\lambda_k = \frac{p_k}{r_k} \). Since \(p_k \leq r_k \), we have \(0 \leq \lambda_k \leq 1 \).

Take \(0 < \lambda > \lambda_k \). Define \(u_k = t_k(t_k \geq 1); u_k = 0(t_k < 1) \); and \(v_k = 0(t_k \geq 1); v_k = t_k(t_k < 1) \); \(t_k = u_k + v_k \); \(t_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k} \). Now it follows that

\[u_k^{\lambda_k} \leq t_k \text{ and } v_k^{\lambda_k} \leq v_k \]

(5)

\[(i.e) \ t_k^{\lambda_k} \leq t_k + v_k^{\lambda_k} \text{ by (5)} \]

\[k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right)^{r_k} \right]^{p_k/r_k} \leq k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right)^{r_k} \right]^{k^{-s}} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right)^{r_k} \right]^{p_k} \leq k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right)^{r_k} \right]^{p_k} \rightarrow 0 \text{ as } k \rightarrow \infty \text{ by (4)} . \]

Hence

\[x \in \Gamma(p, \sigma, q, s) \]

(6)

From (3) and (6) we get \(\Gamma(r, \sigma, q, s) \subset \Gamma(p, \sigma, q, s) \). This completes the proof.

Proof of (ii): The proof is easy, so omitted.

Theorem 3.6 The space \(\Gamma(p, \sigma, q, s) \) is solid and as such is monotone.

Proof: Let \((x_k) \in \Gamma(p, \sigma, q, s) \) and \((\alpha_k) \) be a sequence of scalars such that \(|\alpha_k| \leq 1 \) for all \(k \in N \). Then \(k^{-s} \left[q \left(\left| \alpha_k x_{\sigma^k(n)} \right|^{1/k} \right)^{p_k} \right] \leq k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right)^{p_k} \right] \) for all \(k \in N \). This completes the proof.

Theorem 3.7 The space \(\Gamma(p, \sigma, q, s) \) are not convergence free in general.

Proof: The proof follows from the following example.

Example: Let \(s = 0; p_k = 1 \) for \(k \) even and \(p_k = 2 \) for \(k \) odd. Let \(X = C, q(x) = |x| \) and \(\sigma(n) = n + 1 \) for all \(n \in N \). Then we have \(\sigma^2(n) = \sigma(\sigma(n)) = \sigma(n + 1) = (n + 1) + 1 = n + 2 \) and \(\sigma^3(n) = \sigma(\sigma^2(n)) = \sigma(n + 2) = (n + 2) + 1 = n + 3 \). Therefore \(\sigma^k(n) = (n + k) \) for all \(n, k \in N \). Consider the sequences \((x_k) \) and \((y_k) \) defined as \(x_k = \left(\frac{1}{2} \right)^k \) and \(y_k = k^k \) for all \(k \in N \). (i.e) \(|x_k|^{1/k} = \frac{1}{2}^k \) and \(|y_k|^{1/k} = k \) for all \(k \in N \).

Hence \(\left(\frac{1}{(n+k)} \right)^{n+k} \rightarrow 0 \text{ as } k \rightarrow \infty \). Therefore \((x_k) \in \Gamma(p, \sigma) \). But \(\left(\frac{1}{(n+k)} \right)^{n+k} \rightarrow r \) \(r \neq 0 \) as \(k \rightarrow \infty \). Hence \((y_k) \notin \Gamma(p, \sigma) \). Hence the space \(\Gamma(p, \sigma, q, s) \) are not convergence free in general. This completes the proof.
Acknowledgments

I wish to thank the referees for their several remarks and valuable suggestions that improved the presentation of the paper.

References

N.Subramanian
Department of Mathematics, SASTRA University,
Thanjavur-613 401, India.
E-mail address: nsmaths@yahoo.com

and

K.Chandrasekhara Rao
Department of Mathematics, SASTRA University,
Thanjavur-613 401, India.
E-mail address: kchandrasekhara@rediffmail.com

and

K.Balasubramanian
Department of Mathematics, SASTRA University,
Thanjavur-613 401, India.
E-mail address: k_bala27@yahoo.co.in