Existence of solutions for a fourth order problem at resonance

El. M. Hssini, M. Massar, M. Talbi and N. Tsouli

ABSTRACT: In this work, we are interested at the existence of nontrivial solutions of two fourth order problems governed by the weighted p-biharmonic operator. The first is the following

\[
\Delta(\rho|\Delta u|^{p-2} \Delta u) = \lambda_1 m(x)|u|^{p-2} u + f(x, u) - h \quad \text{in} \quad \Omega, \\
u = \Delta u = 0 \quad \text{on} \quad \partial \Omega,
\]

where \(\lambda_1\) is the first eigenvalue for the eigenvalue problem \(\Delta(\rho|\Delta u|^{p-2} \Delta u) = \lambda m(x)|u|^{p-2} u \quad \text{in} \quad \Omega, \quad u = \Delta u = 0 \quad \text{on} \quad \partial \Omega\). In the second problem, we replace \(\lambda_1\) by \(\lambda\) such that \(\lambda_1 < \lambda < \bar{\lambda}\), where \(\bar{\lambda}\) is given below.

Key Words: p-biharmonic, weight, resonance, saddle point theorem.

Contents

1 Introduction and main results 133

2 Preliminaries and proofs of Theorems 135

1. Introduction and main results

In the present paper, we are concerned with the existence of weak solutions of the following problem

\[
\left\{ \begin{array}{ll}
\Delta(\rho|\Delta u|^{p-2} \Delta u) = \lambda_1 m(x)|u|^{p-2} u + f(x, u) - h & \text{in} \quad \Omega, \\
u = \Delta u = 0 & \text{on} \quad \partial \Omega,
\end{array} \right.
\]

(1.1)

where \(p > 1\), \(\Omega\) is a bounded domain of \(\mathbb{R}^N (N \geq 1)\) with smooth boundary \(\partial \Omega\), \(\rho \in C(\overline{\Omega})\), with min\(\rho(x) > 0\), \(f : \Omega \times \mathbb{R} \rightarrow \mathbb{R}\) is a bounded Carathéodory function, \(h \in L^p(\Omega)\), \(\left(\frac{p'}{p-1}\right)\), \(m \in C(\overline{\Omega})\) is nonnegative weight function and \(\lambda_1\) design the first eigenvalue for the eigenvalue problem

\[
\left\{ \begin{array}{ll}
\Delta(\rho|\Delta u|^{p-2} \Delta u) = \lambda m(x)|u|^{p-2} u & \text{in} \quad \Omega, \\
u = \Delta u = 0 & \text{on} \quad \partial \Omega.
\end{array} \right.
\]

(1.2)

The investigation of existence of solutions for problems at resonance has drawn the attention of many authors, see for example [1,3,6,7,12]. In [7], Liu and Squassina study the following p-biharmonic problem

\[
\left\{ \begin{array}{ll}
\Delta(|\Delta u|^{p-2} u) = g(x, u) & \text{in} \quad \Omega, \\
u = \Delta u = 0 & \text{on} \quad \partial \Omega.
\end{array} \right.
\]

2000 Mathematics Subject Classification: 35J40, 35J60

Typeset by B$	ext{"}{S}$PM style.

© Soc. Paran. de Mat.
Under some conditions on \(g(x, u) \) at resonance, the authors established the existence of at least one nontrivial solution.

According to the work of Talbi and Tsouli \([10]\), the eigenvalue problem (1.2) has a nondecreasing and unbounded sequence of eigenvalues, and the first eigenvalue \(\lambda_1 \) is given by

\[
\lambda_1 = \inf_{u \in X} \left\{ \int_{\Omega} \rho |\Delta u|^p dx : \int_{\Omega} m(x)|u|^p dx = 1 \right\},
\]

where \(X := W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega) \) is the reflexive Banach space endowed with the norm

\[
||u|| = \left(\int_{\Omega} \rho |\Delta u|^p dx \right)^{1/p}.
\]

Since \(m \in C(\Omega) \) and \(m \geq 0 \), \(\lambda_1 \) is positive, simple and isolated. Therefore

\[
\int_{\Omega} \rho |\Delta u|^p dx \geq \lambda_1 \int_{\Omega} m(x)|u|^p dx \quad \text{for all } u \in X.
\]

(1.3)

Moreover, there exists a unique positive eigenfunction \(\varphi_1 \) associated to \(\lambda_1 \), which can be chosen normalized. Let \(\lambda_2 := \inf \{ \lambda : \lambda \text{ is a eigenvalue of (1.2), with } \lambda > \lambda_1 \} \).

The fact that \(\lambda_1 \) is isolated implies that \(\lambda_1 < \lambda_2 \). It can also be shown (see Lemma 2.1) that there exists \(\lambda \in (\lambda_1, \lambda_2) \) such that

\[
\int_{\Omega} \rho |\Delta u|^p dx \geq \lambda \int_{\Omega} m(x)|u|^p dx,
\]

(1.4)

for all \(u \in X \) with \(\int_{\Omega} m(x)\varphi_1^{p-1} u dx = 0 \).

In addition, we study the existence of solutions for the following boundary value problem

\[
\begin{cases}
\Delta(|\Delta u|^{p-2} \Delta u) = \lambda m(x)|u|^{p-2} u + f(x, u) - h & \text{in } \Omega \\
\Delta u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

(1.5)

We assume that the function \(f \) satisfy the following hypothesise:

\((H)\) For almost every \(x \in \Omega \), there exist

\[
\lim_{s \to -\infty} f(x, s) = l(x), \quad \lim_{s \to +\infty} f(x, s) = k(x).
\]

(1.6)

Let us recall the minimum principle and the saddle point theorem (see \([9]\)).

Theorem 1.1. Let \(X \) be a Banach space and \(\Phi \in C^1(X, \mathbb{R}) \). Assume that

(i) \(\Phi \) satisfies the Palais-Smale condition,

(ii) \(\Phi \) is bounded from below \(c = \inf_X \Phi \).

Then there exists \(u_0 \in X \) such that \(\Phi(u_0) = c \).
Theorem 1.2. Let X be a Banach space. Let $\Phi : X \to \mathbb{R}$ be a C^1 functional that satisfies the Palais-Smale condition, and suppose that $X = V \oplus W$, with V a finite dimensional subspace of X. If there exists $R > 0$ such that
\[
\max_{v \in V, ||v|| = R} \Phi(v) < \inf_{w \in W} \Phi(w),
\]
then Φ has at least a critical point on X.

Now, we are ready to state our main results.

Theorem 1.3. Assume that (1.6) holds. Suppose that $h \in L^p' (\Omega)$ is such that either
\[
\int_{\Omega} k(x) \varphi_1 dx < \int_{\Omega} h(x) \varphi_1 dx < \int_{\Omega} l(x) \varphi_1 dx \quad (1.7)
\]
or
\[
\int_{\Omega} l(x) \varphi_1 dx < \int_{\Omega} h(x) \varphi_1 dx < \int_{\Omega} k(x) \varphi_1 dx. \quad (1.8)
\]
Then problem (1.1) has at least a weak solution.

Theorem 1.4. Assume that (1.6) holds. If $h \in L^p' (\Omega)$ satisfy (1.7) or (1.8), then problem (1.5) with $\lambda_1 < \lambda < \lambda$, has at least one solution.

2. Preliminaries and proofs of Theorems

We consider the following energy functional $\Phi : X \to \mathbb{R}$ defined by
\[
\Phi(u) = \frac{1}{p} \int_{\Omega} \rho |\Delta u|^p dx - \frac{\lambda_1}{p} \int_{\Omega} m(x) |u|^p dx + \int_{\Omega} F(x, u) dx + \int_{\Omega} h u dx,
\]
where
\[
F(x, t) = \int_0^t f(x, s) ds \quad \text{for almost every } x \in \Omega, \forall t \in \mathbb{R}.
\]
It is well known that $\Phi \in C^1(X, \mathbb{R})$, with derivative at point $u \in X$ is given by
\[
\langle \Phi'(u), v \rangle = \int_{\Omega} \rho |\Delta u|^{p-2} \Delta u \Delta v dx - \lambda_1 \int_{\Omega} m(x) |u|^{p-2} u v dx - \int_{\Omega} f(x, u) v dx + \int_{\Omega} h v dx,
\]
for every $v \in X$.

Let denote $V = \langle \varphi_1 \rangle$ the linear spans of φ_1 and
\[
W = \left\{ u \in X : \int_{\Omega} m(x) \varphi_1^{p-1} u dx = 0 \right\}. \quad (2.1)
\]
Then we can decompose X as a direct sum of V and W. In fact, let $u \in X$, writing
\[
u = \alpha \varphi_1 + w,
\]
where $w \in X$, and $\alpha = \lambda_1 \int_{\Omega} m(x) \varphi_1^{p-1} u dx$.

Since
\[
\int_{\Omega} \rho |\Delta \varphi_1|^p dx = 1,
\]
\[
\int_{\Omega} m(x) \varphi_1^{p-1} w dx = 0.
\]

Therefore \(w \in W \), hence \(X = V \oplus W \).

We begin by establishing the existence of \(\overline{\lambda} \) for which (1.4) holds.

Lemma 2.1. There exists \(\overline{\lambda} \in (\lambda_1, \lambda_2] \) such that

\[
\int_{\Omega} \rho |\Delta u|^p dx \geq \overline{\lambda} \int_{\Omega} m(x)|u|^p dx,
\]

(2.2)

for all \(u \in W \).

Proof: Let

\[
\lambda = \inf \left\{ \int_{\Omega} \rho |\Delta u|^p dx : u \in W, \int_{\Omega} m(x)|u|^p dx = 1 \right\}.
\]

This value is attained in \(W \). To see why this is so, let \((u_n) \) be a sequence in \(W \), satisfying \(\int_{\Omega} m(x)|u_n|^p dx = 1 \) for all \(n \), and \(\int_{\Omega} \rho |\Delta u_n|^p dx \to \lambda \). It follows that \((u_n) \) is bounded in \(X \) and therefore, up to subsequence, we may assume that

\[
u_n \to u \text{ weakly in } X \quad \text{and} \quad u_n \to u \text{ strongly in } L^p(\Omega).
\]

From the strong convergence of the sequence in \(L^p(\Omega) \) we obtain

\[
\int_{\Omega} m(x)|u|^p dx = \lim_{n \to \infty} \int_{\Omega} m(x)|u_n|^p dx = 1
\]

and

\[
\int_{\Omega} m(x) \varphi_1^{p-1} u dx = \lim_{n \to \infty} \int_{\Omega} m(x) \varphi_1^{p-1} u_n dx = 0,
\]

so that \(u \in W \). By the weakly lower semicontinuity of the norm \(||.||\), we get

\[
\lambda \leq \int_{\Omega} \rho |\Delta u|^p dx \leq \liminf_{n \to \infty} \int_{\Omega} \rho |\Delta u_n|^p dx = \lambda,
\]

and hence \(\lambda \) is attained at \(u \).

Now we claim that \(\lambda > \lambda_1 \). It follows from (1.3) that \(\lambda \geq \lambda_1 \). If \(\lambda = \lambda_1 \), by simplicity of \(\lambda_1 \) there is \(\alpha \in \mathbb{R} \) such that \(u = \alpha \varphi_1 \). Since \(u \in W \),

\[
\alpha \int_{\Omega} m(x) \varphi_1^p dx = 0,
\]

which implies \(\alpha = 0 \). This contradicts the fact that \(\int_{\Omega} m(x)|u|^p dx = 1 \). So, choose \(\overline{\lambda} = \min\{\lambda, \lambda_2\} \). It is clear that \(\overline{\lambda} \) satisfies (2.2) and the proof of lemma is complete.

\(\square \)
Lemma 2.2. Assume that (1.6) and (1.7) or (1.8) are verified. Then the functional \(\Phi \) satisfies the Palais-Smale condition on \(X \).

Proof: Let \((u_n)\) be a sequence in \(X \), and \(c \) a real number such that:

\[
|\Phi(u_n)| \leq c \quad \text{for all } n, \tag{2.3}
\]

\[
\Phi'(u_n) \to 0. \tag{2.4}
\]

We claim that \((u_n)\) is bounded in \(X \). Indeed, suppose by contradiction that

\[
||u_n|| \to +\infty, \quad \text{as } n \to +\infty.
\]

Put \(v_n = u_n/||u_n|| \), thus \((v_n)\) is bounded, for a subsequence still denoted \((v_n)\), we can assume that \(v_n \to v \) weakly in \(X \), by Sobolev injection theorem we have \(v_n \to v \) strongly in \(L^p(\Omega) \), and \(v_n \to v \) a.e. in \(\Omega \). Dividing (2.3) by \(||u_n||^p \), we get

\[
\lim_{n \to +\infty} \left(\frac{1}{p} \int_{\Omega} \rho |\Delta v_n|^p dx - \frac{\lambda_1}{p} \int_{\Omega} m(x)|v_n|^p dx - \int_{\Omega} \frac{F(x, u_n)}{||u_n||^p} dx + \int_{\Omega} h \frac{u_n}{||u_n||^p} dx \right) = 0. \tag{2.5}
\]

By the hypotheses on \(f, h \) and \((u_n)\), we obtain

\[
\lim_{n \to +\infty} \int_{\Omega} \frac{F(x, u_n)}{||u_n||^p} dx = \lim_{n \to +\infty} \int_{\Omega} h \frac{u_n}{||u_n||^p} dx = 0,
\]

while

\[
\lim_{n \to +\infty} \int_{\Omega} m(x)|v_n|^p dx = \int_{\Omega} m(x)|v|^p dx
\]

then, from (2.5) we deduce that

\[
1 = \lim_{n \to +\infty} \int_{\Omega} \rho |\Delta v_n|^p dx = \lambda_1 \int_{\Omega} m(x)|v|^p dx.
\]

Then \(v \not\equiv 0 \). According to the definition of \(\lambda_1 \) and the weak lower semi continuity of norm, one has

\[
\lambda_1 \int_{\Omega} m(x)|v|^p dx \leq \int_{\Omega} \rho |\Delta v|^p dx \leq \liminf_{n \to +\infty} \int_{\Omega} \rho |\Delta v_n|^p dx = \lambda_1 \int_{\Omega} m(x)|v|^p dx.
\]

This implies that

\[
v_n \to v \text{ strongly in } X \quad \text{and} \quad \int_{\Omega} \rho |\Delta v|^p dx = \lambda_1 \int_{\Omega} m|v|^p dx.
\]

By the definition of \(\varphi_1 \), we deduce that \(v = \pm \varphi_1 \).

On the other hand, from (2.3) we have

\[
-cp \leq \int_{\Omega} \rho |\Delta u_n|^p dx - \lambda_1 \int_{\Omega} m(x)|u_n|^p dx - p \int_{\Omega} F(x, u_n) dx + p \int_{\Omega} h u_n dx \leq cp \tag{2.6}
\]
In view of (2.4), for all \(\varepsilon > 0 \) and \(n \) large enough, we have
\[
-\varepsilon \|u_n\| \leq -\int_\Omega \rho |\Delta u_n|^p dx + \lambda_1 \int_\Omega m|u_n|^p dx + \int_\Omega f(x, u_n) u_n dx - \int_\Omega h u_n dx \leq \varepsilon \|u_n\|
\]
(2.7)

Let
\[
g(x, s) = \begin{cases} f(x, s) & \text{if } s \neq 0 \\ f(x, 0) & \text{if } s = 0. \end{cases}
\]
(2.8)

Suppose that \(v_n \rightarrow -\varphi_1 \) (for example), then \(u_n(x) \rightarrow -\infty \) for a.e. \(x \in \Omega \), it follows from (1.6) that
\[
\begin{cases} f(x, u_n) \rightarrow l(x) & \text{a.e } x \in \Omega \\ g(x, u_n) \rightarrow l(x) & \text{a.e } x \in \Omega, \end{cases}
\]
Moreover, the Lebesgue's theorem imply
\[
\lim_{n \to +\infty} \int_\Omega (f(x, u_n)v_n - pg(x, u_n)v_n) dx = (p - 1) \int_\Omega l(x)\varphi_1 dx. \tag{2.9}
\]

Combining (2.6) and (2.7), we get
\[
-cp - \varepsilon \|u_n\| \leq \int_\Omega f(x, u_n) u_n dx - p \int_\Omega F(x, u_n) dx + (p - 1) \int_\Omega h u_n dx \leq cp + \varepsilon \|u_n\|.
\]

Dividing by \(\|u_n\| \) the last inequalities, we obtain
\[
\frac{-cp}{\|u_n\|} - \varepsilon \leq \int_\Omega f(x, u_n) v_n dx - p \int_\Omega g(x, u_n) v_n dx + (p - 1) \int_\Omega h v_n dx \leq \frac{cp}{\|u_n\|} + \varepsilon,
\]
and passing to the limits, we deduce from (2.9) that
\[
\int_\Omega l(x)\varphi_1 dx = \int_\Omega h(x)\varphi_1 dx,
\]
which contradicts both (1.7) and (1.8). Thus \((u_n) \) is bounded in \(X \), for a subsequence denoted also \((u_n) \), there exists \(u \in X \) such that \(u_n \rightharpoonup u \) weakly in \(X \), and strongly in \(L^p(\Omega) \). From
\[
\lim_{n \to +\infty} \langle \Phi'(u_n), (u_n - u) \rangle = 0,
\]
that is
\[
\langle \Phi'(u_n), (u_n - u) \rangle = \int_\Omega \rho |\Delta u_n|^{p-2} \Delta u_n \Delta (u_n - u) dx
\]
\[
- \lambda_1 \int_\Omega m(x)|u_n|^{p-2} u_n (u_n - u) dx
\]
\[
- \int_\Omega f(x, u_n)(u_n - u) dx + \int_\Omega h(u_n - u) dx
\]
\[
= o_n(1).
\]
Using the hypotheses on \(m, h \) and \(f \), we see that

\[
\lim_{n \to +\infty} \int_{\Omega} m(x) |u_n|^{p-2} u_n (u_n - u) dx = 0, \quad \lim_{n \to +\infty} \int_{\Omega} f(x, u_n) (u_n - u) dx = 0
\]

\[
\lim_{n \to +\infty} \int_{\Omega} h (u_n - u) dx = 0.
\]

Consequently,

\[
\lim_{n \to +\infty} \int_{\Omega} \rho |\Delta u_n|^{p-2} \Delta u_n \Delta (u_n - u) dx = 0.
\]

In the same way, we obtain

\[
\lim_{n \to +\infty} \int_{\Omega} \rho |\Delta u|^{p-2} \Delta u \Delta (u_n - u) dx = 0.
\]

Therefore

\[
0 = \lim_{n \to +\infty} \int_{\Omega} \left(\rho |\Delta u_n|^{p-2} \Delta u_n - \rho |\Delta u|^{p-2} \Delta u \right) (u_n - u) dx
\]

\[
\geq \lim_{n \to +\infty} (|| u_n ||^{p-1} - || u ||^{p-1}) (|| u_n || - || u ||) \geq 0,
\]

hence \(|| u_n || \to || u || \). By the uniform convexity of \(X \), it follows that \(u_n \to u \) strongly in \(X \) and \(\Phi \) satisfies the \((PS)\) condition.

\[\square\]

Lemma 2.3. Assume that (1.6) and (1.7) are satisfied. Then the functional \(\Phi \) is coercive on \(X \).

Proof: Suppose by contradiction that \(\Phi \) is not coercive, then there exists a sequence \((u_n) \) such that \(|| u_n || \to +\infty \), and \(|\Phi(u_n)| \leq C \).

In the proof of lemma 2.2, we have showed that \(v_n = u_n / || u_n || \to \pm \varphi_1 \).

Since

\[
0 \leq \int_{\Omega} \rho |\Delta u_n|^{p} dx - \lambda_1 \int_{\Omega} m |u_n|^{p} dx
\]

\[
- \int_{\Omega} F(x, u_n) dx + \int_{\Omega} h u_n dx \leq \Phi(u_n) \leq C. \quad (2.10)
\]

Assume \(v_n \to -\varphi_1 \) (for example). Dividing (2.10) by \(|| u_n || \), we get

\[
- \int_{\Omega} \frac{F(x, u_n)}{|| u_n ||} dx + \int_{\Omega} \frac{h u_n}{|| u_n ||} dx \leq \frac{C}{|| u_n ||}.
\]

Passing to the limits, we have

\[
\int_{\Omega} l(x) \varphi_1 dx \leq \int_{\Omega} h(x) \varphi_1 dx
\]

which contradicts (1.7).

\[\square\]
Proof: [Proof of Theorem 1.3]. If (1.7) holds, the coerciveness of the functional \(\Phi \) and the Palais-Smale condition entain, from theorem 1.1, that \(\Phi \) attains its minimum, so problem (1.1) admits at least a weak solution in \(X \).

If (1.8) holds, then \(\Phi \) has the geometry of the saddle point theorem 1.2. Indeed, splitting \(X = V \oplus W \). Let \(u \in W \), using Höder inequality and the properties of \(F \), since \(\lambda > \lambda_1 \)

\[
\Phi(u) \geq \frac{1}{p} \int_{\Omega} \rho|\Delta u|^p dx - \frac{\lambda_1}{p} \int_{\Omega} m(x)|u|^p dx - \int_{\Omega} F(x, u) dx + \int_{\Omega} h(x) u dx
\]

\[
\geq \frac{1}{p} \left(1 - \frac{\lambda_1}{\lambda} \right) ||u||^p - C(||b||_\infty ||\cdot|| + ||h||_{p'}) ||u||, \tag{2.11}
\]

where \(C \) is the embedding constants of Sobolev, \(||\cdot||_{p'} \) and \(||\cdot||_\infty \) denote the norms in \(L^{p'}(\Omega) \) and \(L^{\infty}(\Omega) \) respectively. Then \(\Phi \) is bounded from below on \(W \), is a consequence of the assumption that \(p > 1 \), so that

\[
\inf_{w \in W} \Phi(w) > -\infty. \tag{2.12}
\]

On the other hand, for every \(t \in \mathbb{R} \), one has

\[
\Phi(t\varphi_1) = -\int_{\Omega} F(x, t\varphi_1) dx + t \int_{\Omega} h(x) \varphi_1 dx
\]

\[
= t \left(\int_{\Omega} h(x) \varphi_1 dx - \int_{\Omega} g(x, t\varphi_1) \varphi_1 dx \right)
\]

where \(g \) has been defined by (2.8). From the Lebesgue theorem, it follows that

\[
\lim_{t \to +\infty} \left(\int_{\Omega} h(x) \varphi_1 dx - \int_{\Omega} g(x, t\varphi_1) \varphi_1 dx \right) = \int_{\Omega} (h(x) - k(x)) \varphi_1 dx, \tag{2.13}
\]

and the limit is negative by (1.8). Analogously, if \(t \) tends to \(-\infty\), we have the same result with \(k(x) \) exchanged with \(l(x) \), so that the limit is positive by (1.8). In both cases we get

\[
\lim_{t \to \pm \infty} \Phi(t\varphi_1) = -\infty \tag{2.14}
\]

By (2.12) and (2.14), there exists \(R > 0 \) such that

\[
\max_{v \in V, ||v|| = R} \Phi(v) < \inf_{w \in W} \Phi(w).
\]

Hence, \(\Phi \) satisfies the hypotheses of Theorem 1.2, and there exists a critical point of \(\Phi \), that is a solution of (1.1).

\[\square\]

Proof: [Proof of Theorem 1.4]. The result of lemma 2.2 holds true for the Euler functional associated to problem (1.5), that is

\[
\Phi_\lambda(u) = \frac{1}{p} \int_{\Omega} \rho|\Delta u|^p dx - \frac{\lambda}{p} \int_{\Omega} m(x)|u|^p dx - \int_{\Omega} F(x, u) dx + \int_{\Omega} h u dx \tag{2.15}
\]
Problem at resonance

141

for every \(u \in X \). Indeed, let \((u_n)\) be a sequence satisfying (2.3) and (2.4), suppose that \((u_n)\) is unbounded, and define \(v_n = u_n/\|u_n\| \), so that, up to subsequence, \((v_n)\) converges weakly to a function \(v \) in \(X \). Dividing (2.4) by \(\|u_n\|^{p-1} \), and then taking \(\langle \Phi'_{\lambda}(u_n), v_n - v \rangle = o_n(1) \), we get

\[
\lim_{n \to +\infty} \int_{\Omega} \rho|\Delta v_n|^{p-2} \Delta v_n \Delta (v_n - v) \, dx = 0
\]

this fact implies (as in proof of lemma 2.2) that \(v_n \to v \) strongly in \(X \). Since

\[
\int_{\Omega} \rho|\Delta v|^{p-2} \Delta v \Delta \psi \, dx = \lambda \int_{\Omega} m|v|^{p-2} v \psi \, dx,
\]

so that \(v \) solve the problem \(\Delta (\rho|\Delta u|^{p-2} \Delta u) = \lambda m(x)|u|^{p-2} u \) with Navier boundary condition on \(\partial \Omega \). But this equation, being \(\lambda \in (\lambda_1, \lambda) \subset (\lambda_1, \lambda_2) \), has zero as the only solution by definition of \(\lambda \). Thus \(v = 0 \), a contradiction with the strong convergence of \(v_n \) to \(v \). Hence \((u_n)\) is bounded. This implies, by same argument in proof of lemma 2.2, that \((u_n)\) is strongly convergent.

On the other hand, as in the second part of the proof of Theorem 1.3, rewrite everything with \(\lambda \) instead of \(\lambda_1 \) and use the fact that \(\lambda > \lambda_1 \) and \(p > 1 \), we have, as before

\[
\lim_{t \to \pm \infty} \Phi_{\lambda}(t \varphi_1) = -\infty.
\]

Using again the saddle point theorem, the desired result follows.

\[\square \]

References

El. Miloud Hssini; Mohammed Massar; Najib Tsouli

University Mohamed I, Faculty of Sciences, Department of Mathematics, Oujda, Morocco. E-mail address: hssini1975@yahoo.fr; massarmed@hotmail.com; tsouli@hotmail.com and

Mohamed Talbi

Centre Régional de Métiers de l’Éducation et de Formation (CRMEF), Oujda, Morocco. E-mail address: talbi_md@yahoo.fr