Reidemeister Classes for Coincidences Between Sections of a Fiber Bundle

D. Penteado and T. F. V. Paiva

ABSTRACT: Let \(s_0, f_0 \) be two sections of a fiber bundle \(q : E \to B \) and assume the coincidence set \(\Gamma(s_0, f_0) \neq \emptyset \). We consider the problem of identifying the algebraic Reidemeister classes for \(s_0 \) and \(f_0 \) with the geometric classes obtained by the lifting maps on covering spaces. We do this by using the homotopy lifting extension property of the fibration \(q \) to obtain homotopies over \(B \). When we make this and the basic point is fixed we can use the elements \(s_0(\beta), f_0(\beta^{-1}) \) where \(\beta \in \pi_1(B, b_0) \) and the elements \(\gamma \in \pi_1(F_0, e_0) \). So we will introduce the algebraic Reidemeister classes relative to the subgroup \(\pi_1(F_0, e_0) \). When the basic points are not fixed we need to consider the classes \(\tilde{s}_0 \) of lifting of \(s_0 \) defined on the universal covering \(\tilde{B} \) to \(\tilde{E} \). The present work relates the lifting classes \(\tilde{s}_0 \) of \(s_0 \) and the algebraic Reidemeister classes \(R_A(s_0, f_0; \pi_1(F_0, e_0)) \), as given in [2],[3] and [5].

Key Words: Coincidence theory, Reidemeister classes, Fiber bundle.

Contents

1 Introduction 85

2 Covering projection constructed from a subgroup and relations on the lifting maps 87

3 Algebraic Reidemeister classes relative of a subgroup 91

4 The coincidence set and the Nielsen classes for sections on the fiber bundle 93

1. Introduction

Let \(f : (B, b_0) \to (B, b_0) \) be a function and assume that \(B \) is compact, locally path connected, semi locally 1-connected and an euclidean neighborhood retract space. Then there is the universal covering \(p^{b_0} : \tilde{B}(b_0) \to B \), constructed from the trivial subgroup \(\{[b_0]\} \leq \pi_1(B, b_0) \). Let \(T : \pi_1(B, b_0) \to \text{Cov}(\tilde{B}(b_0)/B) \) be the isomorphism \(\beta \mapsto T_\beta \), the deck transformation associated to \(\beta \).

Let \(\mathcal{L}(f_0) \) be the set of all liftings \(f \) of \(f_0 \) with respect to the following commutative diagram. Note that the second diagram corresponds to the case when \(f \) is
the identity map I_B.

$$\begin{array}{ccc}
\tilde{B}(b_0) & \xrightarrow{\tilde{f}} & \tilde{B}(b_0) \\
p^0 \downarrow & & \downarrow p^0 \\
B & \xrightarrow{f} & B \end{array} \quad \begin{array}{ccc}
\tilde{B}(b_0) & \xrightarrow{I_B} & \tilde{B}(b_0) \\
p^0 \downarrow & & \downarrow p^0 \\
B & \xrightarrow{I_B} & B
\end{array} \quad (1.1)
$$

Consider the following equivalence relation on the set $\mathcal{L}(f)$: $\tilde{f}_1 R_L \tilde{f}_2 \iff \tilde{f}_1 = T_\beta \circ \tilde{f}_2 \circ T_\beta^{-1}$, with $\beta \in \pi_1(B, b_0)$. We denote by $R_L(\mathcal{L}(f))$ the quotient set and by $[\tilde{f}]_L$ the class of \tilde{f} and $r_L(\mathcal{L}(f)) = |R_L(\mathcal{L}(f))|$. In [3], [2] and [4] the authors related the relation R_L with the algebraic Reidemeister classes induced by $I_B, f : \pi_1(B, b_0) \to \pi_1(B, b_0)$ whose quotient set is $R_A(f, I_B)$ and $r_A(f, I_B) = |R_A(f, I_B)|$. They proved that:

1. There is an one to one correspondence between $R_L(\mathcal{L}(f))$ and $R_A(f, I_B)$, therefore $r_L(\mathcal{L}(f)) = r_A(f, I_B)$.

2. If $[\tilde{f}_1]_L = [\tilde{f}_2]_L$ then $p^0_b \left(Fix(\tilde{f}_1) \right) = p^0_b \left(Fix(\tilde{f}_2) \right)$.

3. If $p^0_b \left(Fix(\tilde{f}_1) \right) \cap p^0_b \left(Fix(\tilde{f}_2) \right) \neq \emptyset$ then $[\tilde{f}_1]_L = [\tilde{f}_2]_L$.

In fixed point theory it is usual to put the date $f, I_B : B \to B$ on the context of fiber bundle considering the trivial fiber bundle $q : B \times B \to B$, $q(b_1, b_2) = b_1$ and the sections $s_0, f_0 : B \to B \times B$ of q given by $s_0(b) = (b, b)$ and $f_0(b) = (b, f(b))$.

In this work we consider a general fiber bundle $q : E \to B$ and initially two sections $s_0, f_0 : (B, b_0) \to (E, e_0)$ and F_0 the fiber over b_0 which satisfies good hypotheses on B, E and $F_0 = q^{-1}(b_0)$. The purpose of this work is to prove an analogous result of some results in [2] and [3] in this context of section on fiber bundle.

This work is divided in four sections. In Section 2 we established notations and we listed some results about the construction of covering spaces of a subgroup G of $\pi_1(E, e_0)$ and we explicit the lifting \tilde{s}_0, \tilde{f}_0 and s_{F_0}, f_{F_0}. We also introduce the equivalence relation R_{F_0} on the set $\mathcal{L}(s_0, f_0)$ and the relation R_{s_0} on $\mathcal{L}(f_0, s_{F_0})$ which the sets are, respectively, specified lifting maps on the universal covering for the sections s_0 and f_0, as in [2],[3] and [5]. The Theorem 2.9 established the first approximations between relations R_{F_0} or R_{s_0} and the Reidemeister relation relative to the subgroup $\pi_1(F_0, e_0)$, as we will see in the next section. In Section 3 we defined the algebraic Reidemeister classes relative of a subgroup $H_0 \leq G_0$ induced by the homomorphisms $\varphi, \psi : G_1 \to G_0$ which the quotient set is $R_A(\varphi, \psi; H_0)$. In particular, we will apply this for the homomorphisms on the fundamental groups for two sections $s_0, f_0 : \pi_1(B, b_0) \to \pi_1(E, e_0)$ of a fiber bundle $q : E \to B$ and the subgroup $H_0 = \pi_1(F_0, e_0)$, so we have the set $R_A(s_0, f_0; \pi_1(F_0, e_0))$.

In Section 4 we also defined the set of Nielsen coincidence classes which is indicated by $\Gamma(s_0, f_0)$ and proved that it is finite under good hypotheses on the spaces
B, E, F₀. We also exhibit an injection map \(\tilde{\Gamma}(s₀, f₀) \to Rₜ₀(s₀, f₀; π₁(F₀, e₀)) \).

We finished this section relating the theorems 2.9 and 4.3 and then we proved the main theorem 4.5, which established an one-to-one correspondence between \(Rₗ₀(\mathcal{L}(f₀; sF₀)) \) and \(Rₜ₀(s₀, f₀; π₁(F₀, e₀)) \) or similarly for the classes \([\pi]₀\) on the set \(Rₗ₀(\mathcal{L}(s₀; fF₀))\), as in [4] and [5].

2. Covering projection constructed from a subgroup and relations on the lifting maps

Let \(G \) be a subgroup of \(π₁(E, e₀) \) and let \(P(E, e₀) \) be the set of all paths \(α : [0, 1] \to E \) such that \(α(0) = e₀ \). We say that \(α₁, α₂ \in P(E, e₀) \) are \(G \)-related if \(α₁(1) = α₂(1) \) and the class \([α₁ * α₂⁻¹]\) \(G \geq π₁(E, e₀) \). It is easy to prove that this is an equivalence relation and we denote the class from the path \(α \) by \((e, α)\) with \(e = α(1) \). The quotient set of \(P(E, e₀) \) by this relation is indicated by \(\tilde{E}(G) \).

In [6] the author defined a basis for a topology on the set \(\tilde{E}(G) \) for which the function \(p^G : \tilde{E}(G) \to E, p^G(e, α) = e \) is continuous. Moreover if \(E \) is path connected then \(p^G \) is a surjection and we have the following statements:

1. If \(E \) is connected, locally path connected and semi-locally 1-connected then
 \[
p^G : \left(\tilde{E}(G), \tilde{e₀}\right) \to (E, e₀) \text{ is a covering space with } p^G(π₁(\tilde{E}(G), \tilde{e₀})) = G,
 \]
 where \(\tilde{e₀} = (e₀, π₀) \) and \(π₀ \) is the constant path on \(e₀ \in E \).

2. If \(G₁ ≤ G₂ ≤ π₁(E, e₀) \) are subgroups and \(p^{G₁} : \tilde{E}(G₁) \to E, p^{G₂} : \tilde{E}(G₂) \to E \) are covering spaces then there is a covering space \(p^{G₁}_G : \tilde{E}(G₁) \to \tilde{E}(G₂) \) so that \(p^{G₁} = p^{G₂} \circ p^{G₁}_G \).

3. If \(G \) is a normal subgroup of \(π₁(E, e₀) \) and \(p : (\tilde{E}, \tilde{x₀}) \to (E, e₀) \) is a covering space so that \(p(π₁(\tilde{E}, x₀)) = G \) then there is an homeomorphism \(φ : (\tilde{E}, \tilde{x₀}) \to (\tilde{E}(G), \tilde{e₀}) \) so that \(p = p^G \circ φ \).

Now we apply this construction when we have two sections \(s₀, f₀ : (B, b₀) \to (E, e₀) \) of a fiber bundle \(q : (E, e₀) \to (B, b₀) \). For this we suppose that \(E, B \) and the fiber \(F₀ = q^{-1}(b₀) \) are compact spaces with \(B \) and \(E \) satisfying the hypothesis as in (1) above.

More precisely, we construct the universal covering spaces for the trivial subgroups \([\beta]₀ \subset π₁(B, b₀)\) and \([\tilde{π}₀] \subset π₁(E, e₀)\) which are denoted by \(p^{\tilde{B}} : \tilde{B}(b₀) \to B \) and \(p^{\tilde{E}} : \tilde{E}(e₀) \to E \). We also consider the regular covering space \(p^{\tilde{F₀}} : \tilde{E}(F₀) \to E \) where \(\tilde{E}(F₀) = \tilde{E}(π₁(F₀, e₀)) \).

As in (2) above we denote \(p^{\tilde{F₀}}_e : \tilde{E}(e₀) \to \tilde{E}(F₀) \) for the covering space so that \(p^G = p^{\tilde{F₀}} \circ p^{\tilde{F₀}}_e \).

From these constructions it is easy to explicit the covering projections, that is \(p^{\tilde{B}}(b, β) = b, p^{\tilde{E}}(e, β) = e \) and \(p^{\tilde{F₀}}_e(e, α) = (e, α)F₀ ∈ \tilde{E}(F₀) \). Moreover from
the sections \(s_0, f_0 : (B, b_0) \to (E, e_0) \) it is possible to explicit two special lifting maps as in the following lemma:

Lemma 2.1. The maps

\[
\tilde{s}_0, \tilde{f}_0 : (\tilde{B}(b_0), \tilde{b}_0) \to (\tilde{E}(e_0), \tilde{e}_0) \quad \text{and} \quad s_{F_0}, f_{F_0} : (\tilde{B}(b_0), \tilde{b}_0) \to (\tilde{E}(F_0), \tilde{e}_0)
\]

given by \(\tilde{s}_0(b, \beta)_{b_0} = \langle s_0(b), s_0(\beta) \rangle_{e_0}, \) \(\tilde{f}_0(b, \beta)_{b_0} = \langle f_0(b), f_0(\beta) \rangle_{e_0}, \) \(s_{F_0}(b, \beta)_{b_0} = \langle s_0(b), s_0(\beta) \rangle_{F_0} \) and \(f_{F_0}(b, \beta)_{b_0} = \langle f_0(b), f_0(\beta) \rangle_{F_0} \) are continuous and the following diagram commutes.

Proof: The commutativity is immediate from the constructions. Note that the continuity of the maps is given by the choice of the topology on the sets \(\tilde{B}(b_0), \tilde{E}(e_0) \) and \(\tilde{E}(F_0) \). In fact, let \(\langle b, \beta \rangle_{b_0} \in \tilde{B}(b_0) \) and \(V (\langle s_0(b), s_0(\beta) \rangle_{e_0}) \) be a basic open set of the topology on \(\tilde{E}(e_0) \) where \(V \) is an open neighborhood of \(s_0(b) \) in \(E \). From the continuity of \(s_0 \) let \(U = \tilde{s}_0^{-1}(V) \subseteq B \) an open neighborhood of \(b \) on \(B \) and note that \(\tilde{s}_0(U (\langle b, \beta \rangle_{b_0})) \subseteq V (\langle s_0(b), s_0(\beta) \rangle_{e_0}) \).

The continuity of the \(\tilde{f}_0, s_{F_0} \) and \(f_{F_0} \) is shown by similar argument. \(\Box \)

For \(\beta \in \pi_1(B, b_0) \) the correspondent deck transformation we denote by \(T_{\beta} \in Cov(\tilde{B}(b_0)/B) \) and similarly, \(T_{\alpha}, T_{\gamma} \) for \(\alpha \in \pi_1(E, e_0) \) and \(\gamma \in \pi_1(F_0, e_0) \lt \pi_1(E, e_0) \).

From the covering map constructions we can to explicit the following fibers, where we use the same symbol to express the loop path and its class on fundamental groups:

\[
(p_{F_0})^{-1}((e_0, \pi_0)_{F_0}) = (p_{F_0})^{-1}(\pi_{F_0})^{-1}(\pi_{F_0})^{-1}(\pi_{F_0})^{-1}(e_0) = \{ (e_0, s_0(\beta))_{F_0} = (e_0, f_0(\beta))_{F_0} ; \beta \in \pi_1(B, b_0) \} ;
\]

We know that on thoses fibers we have a right transitive action of the fundamental group and a left action of the deck transformation group. For example, if \(\beta \in \pi_1(B, b_0) \) then

\[
T_{\beta} (\langle b_0, \beta_1 \rangle_{b_0}) = \langle b_0, \beta_1 \rangle_{b_0} \ast \beta^{-1} = \langle b_0, \beta_1 \ast \beta^{-1} \rangle_{b_0} ,
\]

\((2.1) \)
Lemma 2.3. \(\text{Cov}(E(e_0)/E(F_0)) \simeq \pi_1(F_0,e_0) \) and \(\text{Cov}(E(F_0)/E) \simeq \pi_1(B,b_0) \simeq \text{Cov}(\tilde{B}(b_0)/B) \).

\[\text{Lemma 2.4.} \]

1. If \(\tilde{e} \in \mathcal{L}(s_0) \) and \(\tilde{e} = \tilde{s}_0 \circ T_\beta \) then there is only one \(\alpha(\tilde{e}) \in \pi_1(E_0,e_0) \) so that \(T_\alpha(\tilde{e}) = \tilde{s}_0 \circ T_\beta \) and moreover \(\alpha(\tilde{e}) = s_0(\beta) \).

2. If \(\tilde{f} \in \mathcal{L}(f_0) \) and \(\tilde{f} = \tilde{f}_0 \circ T_\beta \) then there is only one \(\alpha(\tilde{f}) \in \pi_1(E,e_0) \) so that \(T_\alpha(\tilde{f}) = \tilde{f}_0 \circ T_\beta \) and moreover \(\alpha(\tilde{f}) = f_0(\beta) \).

\[\text{Remark 2.5.} \]

From lemmas 2.4 and 2.3 part (3), for each pair \((\tilde{s},\tilde{f}) \in \mathcal{L}(s_0,f_0) \) we can write in the form

\[(\tilde{s},\tilde{f}) = (T_{\alpha_1} \circ \tilde{s}_0,T_{\alpha_2} \circ \tilde{f}_0) = (T_{\alpha_1 \cdot s_0(q(\alpha_1^{-1})) \cdot f_0(q(\alpha_2^{-1}))} \circ \tilde{s}_0,T_{\alpha_2 \cdot f_0(q(\alpha_2^{-1}))}) \circ \tilde{f}_0) = (T_{\alpha_1 \cdot s_0(q(\alpha_1^{-1}))} \circ \tilde{s}_0 \circ T_{q(\alpha_1)}, T_{\alpha_2 \cdot f_0(q(\alpha_2^{-1}))} \circ \tilde{f}_0 \circ T_{q(\alpha_2)}) \]
where $\gamma_1 = \alpha_1 \ast s_0(q(\alpha_1^{-1})) \in \pi_1(F_0, e_0)$ and $\gamma_2 = \alpha_2 \ast f_0(q(\alpha_2^{-1})) \in \pi_1(F_0, e_0)$. Because we are considering the constant homotopy on the basic space $T_B : B \times [0,1] \to B$ to deform the initial sections s_0, f_0 over B, so we assume that $q(\alpha_1) = q(\alpha_2)$. From this we consider only the pairs of liftings $(T_{\gamma_1}^{-1} \ast s_0, \tilde{f}_0) \in \mathcal{L}(s_0; f_{F_0})$ or $(s_0, T_{\gamma_1}^{-1} \ast s_0 \circ f_0) \in \mathcal{L}(f_0; s_{F_0})$.

Definition 2.6.

1. Given $(\tilde{s}_1, \tilde{f}_0)$ and $(\tilde{s}_2, \tilde{f}_0) \in \mathcal{L}(s_0; f_{F_0})$ we say that $(\tilde{s}_1, \tilde{f}_0)$ is lifting related with $(\tilde{s}_2, \tilde{f}_0)$ for the f_0, in symbols $\tilde{s}_1 R_{\tilde{s}_0} \tilde{s}_2$, or $(\tilde{s}_1, \tilde{f}_0) R_{\tilde{s}_0}(\tilde{s}_2, \tilde{f}_0)$, if and only if $T_{\tilde{s}_0} R_{\tilde{s}_0} \tilde{s}_1 = \tilde{s}_2 \circ T_{\tilde{s}_0}$ for some $\beta \in \pi_1(B, b_0)$.

2. Similarly for the elements $(\tilde{s}_0, \tilde{f}_1) (\tilde{s}_0, \tilde{f}_2) \in \mathcal{L}(f_0; s_{F_0})$ we define the relation R_{s_0} by $f_1 R_{s_0} f_2 \Leftrightarrow T_{s_0} \circ \tilde{f}_1 = \tilde{f}_2 \circ T_{\tilde{s}_0}$ for some $\beta \in \pi_1(B, b_0)$.

Proposition 2.7.

1. The relation R_{f_0} is an equivalence relation on the set $\mathcal{L}(s_0; f_{F_0})$.

2. The relation R_{s_0} is an equivalence relation on the set $\mathcal{L}(f_0; s_{F_0})$.

Proof: If $\beta = [b_0] \in \pi_1(B, b_0)$ then $\tilde{s}_1 R_{\tilde{s}_0} \tilde{s}_1$. If $\tilde{s}_1 R_{f_0} \tilde{s}_2$ with $T_{f_0} R_{f_0} \tilde{s}_1 = \tilde{s}_2 \circ T_{f_0}$ thus $T_{f_0} R_{f_0} \tilde{s}_1 = \tilde{s}_2 \circ T_{f_0}$. If $\tilde{s}_1 R_{f_0} \tilde{s}_2$ and $\tilde{s}_2 R_{f_0} \tilde{s}_3$ which implies that there are $\beta_1, \beta_2 \in \pi_1(B, b_0)$ such that $T_{f_0} R_{f_0} \tilde{s}_1 = \tilde{s}_2 \circ T_{f_0}$ and $T_{f_0} R_{f_0} \tilde{s}_2 = \tilde{s}_3 \circ T_{f_0}$. Therefore,

$$T_{f_0} R_{f_0} \tilde{s}_1 = T_{f_0} R_{f_0} \tilde{s}_2 \circ T_{f_0} = T_{f_0} R_{f_0} \tilde{s}_3 \circ T_{f_0} = T_{f_0} R_{f_0} \tilde{s}_4 \circ T_{f_0} = \vdots$$

The proof of (2) is analogous. \square

Let $R_{f_0}(\mathcal{L}(s_0; f_{F_0}))$ and $R_{s_0}(\mathcal{L}(f_0; s_{F_0}))$ be the quotient spaces by the relations R_{f_0} and R_{s_0} on the spaces $\mathcal{L}(s_0; f_{F_0})$ and $\mathcal{L}(f_0; s_{F_0})$ respectively. Denote by $r_{f_0}(\mathcal{L}(s_0; f_{F_0}))$ and $r_{s_0}(\mathcal{L}(f_0; s_{F_0}))$ the respective cardinals of the quotient spaces.

The following definition is approximation between the relation R_{f_0}, or R_{s_0}, and the Reidemeister relation relative to the subgroup $\pi_1(F_0, e_0)$ as we will view in the next section.

Definition 2.8. Let $\tilde{s}_1 = T_{\gamma_1} \circ \tilde{s}_0, \tilde{s}_2 = T_{\gamma_2} \circ \tilde{s}_0$ be in $\mathcal{L}(s_0; f_{F_0})$ where $\gamma_1, \gamma_2 \in \pi_1(F_0, e_0)$. We say that \tilde{s}_1 is lifting related with \tilde{s}_2, in symbol $\tilde{s}_1 R_{\tilde{s}_0} \tilde{s}_2$, if there is $\beta \in \pi_1(B, b_0)$ so that $f_0(\beta) \circ \gamma_1 = \gamma_2 \circ f_0(\beta)$. Similarly we define for $\tilde{f}_1 = T_{\gamma_1} \circ \tilde{f}_0, \tilde{f}_2 = T_{\gamma_2} \circ \tilde{f}_0$ be in $\mathcal{L}(f_0; s_{F_0})$. That is $\tilde{f}_1 R_{\tilde{s}_0} \tilde{f}_2$ if and only if there is $\beta \in \pi_1(B, b_0)$ such that $f_0(\beta) \circ \gamma_1 = \gamma_2 \circ s_0(\beta)$.

Theorem 2.9.
1. The relation R_L defined on $\mathcal{L}(s_0; f_{E_0})$ is an equivalence relation.

2. The relation R_L defined on $\mathcal{L}(f_0; s_{E_0})$ is an equivalence relation.

3. $[\tilde{s}]_{f_0} = [\tilde{s}]_{L}$ and $[\tilde{f}]_{s_0} = [\tilde{f}]_{L}$. Therefore if $R_L(\mathcal{L}(s_0; f_{E_0}))$ and $R_L(\mathcal{L}(f_0; s_{E_0}))$ are the quotient set by the relation R_L then there is an one to one correspondence between the followings sets:

$$R_{f_0}(\mathcal{L}(s_0; f_{E_0})) \leftrightarrow R_L(\mathcal{L}(s_0; f_{E_0})) \leftrightarrow R_{s_0}(\mathcal{L}(f_0; s_{E_0})) \leftrightarrow R_L(\mathcal{L}(f_0; s_{E_0})).$$

Proof: We will prove the item (1). Obviously the relation R_L is reflexive and symmetric. If $\tilde{s}_i = T_{r_1} \circ \tilde{s}_{r_2}$ for $i = 1, 2, 3$ and $\tilde{s}_1R_L\tilde{s}_2$ and $\tilde{s}_3R_L\tilde{s}_3$ then there exists β_1 and β_2 in $\pi_1(B, b_0)$ such that $f_0(\beta_1) * \gamma_1 = \gamma_2 * s_0(\beta_1)$ and $f_0(\beta_2) * \gamma_2 = \gamma_3 * s_0(\beta_2)$. So we have

$$f_0(\beta_2 * \beta_1) * \gamma_1 = f_0(\beta_2) * (f_0(\beta_1) * \gamma_1) = f_0(\beta_2) * \gamma_2 * s_0(\beta_1) = \gamma_3 * s_0(\beta_2) * s_0(\beta_1).$$

Therefore $\tilde{s}_1R_L\tilde{s}_3$. The proof of (2) is analogous.

In fact $[\tilde{s}]_{f_0} = [\tilde{s}]_{L}$. If $\tilde{s}_1R_{f_0}\tilde{s}_2$, then there is $\beta \in \pi_1(B, b_0)$ such that $T_{f_0(\beta)} \circ \tilde{s}_1 = \tilde{s}_2 \circ T_{\beta}$. But $\tilde{s}_1, \tilde{s}_2 \in \mathcal{L}(s_0; f_{E_0})$ so there are $\gamma_1, \gamma_2 \in \pi_1(F_0, c_0)$ such that $\tilde{s}_1 = T_{\gamma_1} \circ \tilde{s}_0$ and $\tilde{s}_2 = T_{\gamma_2} \circ \tilde{s}_0$. Since $\tilde{s}_1R_{f_0}\tilde{s}_2$ we have:

$$T_{f_0(\beta)} \circ \tilde{s}_1 = \tilde{s}_2 \circ T_{\beta},$$

$$T_{f_0(\beta)} \circ T_{\gamma_1} \circ \tilde{s}_0 = T_{\gamma_2 \circ s_0(\beta)} \circ \tilde{s}_0.$$

The last equation means that $\tilde{s}_1R_L\tilde{s}_2$. Therefore there is an one to one correspondence between the sets. The second part is analogous. \hfill \Box

3. **Algebraic Reidemeister classes relative of a subgroup**

Definition 3.1. Let $\psi, \varphi : G_1 \to G_0$ be group homomorphisms and H_0 a subgroup of G_0. We say that two elements $h_1, h_2 \in H_0$ are $(\varphi, \psi; H)$—algebraic Reidemeister related, in symbols $h_1R_{(\varphi, \psi; H_0)}h_2 = h_1R_{H_0}h_2$ or $h_1R_AP_{H_0}$ if there is $g \in G_0$ such that $\varphi(g)h_1 = h_2\psi(g)$.

It is easy to prove that $R_{(\varphi, \psi; H_0)}$ is an equivalence relation on H_0, called the algebraic Reidemeister relation of φ and ψ relative to the subgroup H_0. We denoted by $[h]_{(\varphi, \psi; H_0)} = [h]_{H_0}$ or $[h]_A$ the algebraic Reidemeister class determined by $h \in H_0$ and by $A(\varphi, \psi; H_0)$ to the quotient set. The cardinal of $A(\varphi, \psi; H_0)$ which is indicated by $r(\varphi, \psi; H_0)$ is called $(\varphi, \psi; H_0)$—Reidemeister number. When $H_0 = G_0$ we denoted $R(\varphi, \psi; G_0) = R(\varphi, \psi)$ and $r(\varphi, \psi; G_0) = r(\varphi, \psi)$.

Proposition 3.2. Let $\varphi, \psi : G_1 \to G_0$ be homomorphisms and H_0, K_0 subgroups of G_0. If $H_0 \leq K_0$ then $r(\varphi, \psi; H_0) \leq r(\varphi, \psi; K_0)$.

Proof: Just set the injection $R_A(\varphi, \psi; H_0) \leftrightarrow R_A(\varphi, \psi; K_0)$, $[a]_{H_0} \mapsto [a]_{K_0}$. □

Remark 3.3. If \{e_{G_0}\} is the trivial subgroup of G_0 then for any subgroup H_0 of G_0 we have $1 = r(\varphi, \psi; \{e_{G_0}\}) \leq r(\varphi, \psi; H_0) \leq r(\varphi, \psi)$.

Proposition 3.4. Let $\varphi, \psi : G_2 \to G_1$ be homomorphisms, $K_1 \leq G_1$ and $\Phi : G_1 \to G_0$ a homomorphism with $H_0 = \Phi(K_1)$. The following map $\Phi_A : R_A(\varphi, \psi; K_1) \to R_A(\Phi \circ \varphi, \Phi \circ \psi; H_0)$ given by $\Phi_A([k]_{K_1}) = [\Phi(k)]_{H_0}$ is surjective. Therefore $r(\varphi, \psi; K_1) \geq r(\Phi \circ \varphi, \Phi \circ \psi; H_0)$.

If Φ has the left inverse homomorphism $\Psi : G_0 \to G_1$ then Φ_A is an one to one correspondence and $\Phi_A^{-1}[\Phi(k)]_{H_0} = [k]_{K_1}$ so $r(\varphi, \psi; K_1) = r(\Phi \circ \varphi, \Phi \circ \psi; H_0)$.

Proof: If $[k_1]_{K_1} = [k_2]_{K_1}$ there is g_2 such that $\varphi(g_2)k_1 = k_2\varphi(g_2)$, then $\Phi(\varphi(g_2))\Phi(k_1) = \Phi(k_2)\Phi(\varphi(g_2))$. Therefore we have a well defined map $\Phi_A^1 : R_A(\varphi, \psi; K_1) \to R_A(\Phi \circ \varphi, \Phi \circ \psi; H_0)$ given by $[k]_{K_1} \mapsto [\Phi(k)]_{H_0}$. As $H_0 = \Phi(K_1)$, it is easy to prove that the map Φ_A is surjective.

Otherwise if $\Psi : G_0 \to G_1$ is a left inverse of Φ then when we apply Ψ in the equation $\Phi(\varphi(g_2))\Phi(k_1) = \Phi(k_2)\Phi(\varphi(g_2))$ we have a well defined map $\Psi_{\Phi(K_0)} : R_A(\Phi \circ \varphi, \Phi \circ \psi; K_1) \to R_A(\varphi, \psi; K_1)$ such that $\Phi_A \circ \Psi_{\Phi(K_0)}$ is identity of $R_A(\varphi, \psi; K_1)$.

Therefore Φ_A is an one to one correspondence and we have the equivalence on the Reidemeister numbers $r(\varphi, \psi; K_1) = r(\Phi \circ \varphi, \Phi \circ \psi; H_0)$ with $H_0 = \Phi(K_1)$. □

Example 3.5 (Case trivial fiber bundle). Let $f, g : (B, b_0) \to (F, y_0)$ be continuous maps. So we have $f, g : \pi_1(B, b_0) \to \pi_1(F, y_0)$ and the set of algebraic Reidemeister classes $R_A(f, g)$. Now we consider the trivial fiber bundle $q : (B \times F, (b_0), y_0)) \to (B, b_0)$ so the maps f, g induce two sections $s_f, s_g : (B, b_0) \to (B \times F, (b_0), y_0)$ given by $s_f(b) = (b, f(b))$ and $s_g(b) = (b, g(b))$. Let $F_0 = \{b_0\} \times F = q^{-1}(b_0)$ be the fiber over b_0 with base point $e_0 = (b_0, y_0)$ so $\pi_1(F_0)$. Then we can consider the algebraic classes of Reidemeister $R_A(s_g, s_f; \pi_1(F_0, e_0))$ and $\Phi(\pi_1(F_0, b_0), y_0)) \equiv \pi_1(F, y_0)$. Then we conclude that:

\[
R_A(s_g, s_f; \pi_1(F_0, e_0)) \leftrightarrow R_A(\Phi \circ s_g, \Phi \circ s_f; \Phi(\pi_1(F_0, e_0))) \leftrightarrow R_A(g, f; \pi_1(F, y_0)) = R_A(g, f) \tag{3.1}
\]

Example 3.6 (Case not trivial fiber bundle). We consider two sections $s_0, f_0 : (B, b_0) \to (E, e_0)$ of the fiber bundle $q : (E, e_0) \to (B, b_0)$. We used s_0 to describe the structure of the group $\pi_1(E, e_0)$ as the semi direct product $\pi_1(F_0, e_0) \rtimes \pi_1(B, b_0)$. Formally, let $\Phi : \pi_1(E, e_0) \to \pi_1(F_0, e_0) \rtimes \pi_1(B, b_0)$ be the isomorphism given by

\[
\Phi(\alpha) = (\alpha \ast s_0(q(\alpha^{-1})), q(\alpha)) \in \pi_1(F_0, e_0) \rtimes \pi_1(B, b_0), \tag{3.2}
\]

The operation on $\pi_1(F_0, e_0) \rtimes \pi_1(B, b_0)$ is expressed by

\[
(\gamma_1, \beta_1) \bullet (\gamma_2, \beta_2) := (\gamma_1 \ast s_0(\beta_1) \ast \gamma_2 \ast s_0(\beta_1^{-1})), \beta_1 \ast \beta_2). \tag{3.3}
\]
Let $\Psi := \Phi^{-1} : \pi_1(F_0, e_0) \times \pi_1(B, b_0) \to \pi_1(E, e_0)$ be the inverse isomorphism of Φ given by $\Psi(\gamma, \beta) = \gamma \ast s_0(\beta^{-1})$ and let $H_0 = \pi_1(F_0, e_0) \times \{[b_0]\} = \Phi(\pi_1(F_0, e_0))$ be the subgroup of $\pi_1(F_0, e_0) \times \pi_1(B, b_0)$. By the proposition 3.4 we have $R_A(s_0, f_0; \pi_1(F_0, e_0)) \leftrightarrow R_A(\Phi \circ s_0, \Phi \circ f_0; H_0)$.

For the operation \bullet in $\pi_1(F_0, e_0) \times \pi_1(E, e_0)$ expressed in (3.3) when we describe the classes of $R_A(\Phi \circ s_0, \Phi \circ f_0; H_0)$ we have the same classes on

$$R_A(s_0, f_0; \pi_1(F_0, e_0))$$

$$\Phi \circ s_0(\beta) \bullet (\gamma_1, [b_0]) = (\gamma_2, [b_0]) \bullet (\Phi \circ f_0(\beta))$$

$$(s_0(\beta) \ast \gamma_1 \ast s_0(\beta^{-1}), \beta) = (\gamma_2 \ast f_0(\beta) \ast s_0(\beta^{-1}), \beta)$$

$$(3.4)$$

4. The coincidence set and the Nielsen classes for sections on the fiber bundle

Let $s_0, f_0 : (B, b_0) \to (E, e_0)$ be the sections of a fiber bundle $q : (E, e_0) \to (B, b_0)$ and $\Gamma^B_E(s_0, f_0) = \{b \in B, s_0(b) = f_0(b) \neq \emptyset\}$ be the coincidence topological space induced from B. Note that $\Gamma^B_E(s_0, f_0) = s_0^{-1}(f_0(B)) = f_0^{-1}(s_0(B))$.

In $\Gamma^B_E(s_0, f_0)$ we defined the Nielsen classes for $b_1, b_2 \in \Gamma^B_E(s_0, f_0)$ saying that b_1 is Nielsen related to b_2, in symbols $b_1 \sim b_2$, if and only if there is a path $\beta_{b_1}^{b_2}$ on B connecting b_1 to b_2 such that $s_0(\beta_{b_1}^{b_2})$ is homotopic to $f_0(\beta_{b_1}^{b_2})$ relative to $\{0, 1\}$. It easy is to verify that N is an equivalent relation and we denote by $[b_1]_N$ the class determined by b_1. If $\tilde{\Gamma}^B_E(s_0, f_0)$ is the quotient set of $\Gamma^B_E(s_0, f_0)$ by the Nielsen relation, we denote by $p_N : \Gamma^B_E(s_0, f_0) \to \tilde{\Gamma}^B_E(s_0, f_0)$ the canonical projection map.

Considering $\tilde{\Gamma}^B_E(s_0, f_0)$ with the topology co-induced by p_N we have the following statements.

Theorem 4.1.

1. If $[b_1]_{cc}$ is the connected component by path of $b_1 \in \Gamma^B_E(s_0, f_0)$ then $[b_1]_{cc} \subset [b_1]_N$.

2. If E is a Hausdorff topological space then $\Gamma^B_E(s_0, f_0)$ is closed in B.

3. If B is locally path connected and E is Hausdorff and semilocally 1-connected topological space then $\tilde{\Gamma}^B_E(s_0, f_0)$ is discrete topological space.

4. If B and E satisfies the before conditions and $\Gamma^B_E(s_0, f_0)$ is compact then $\tilde{\Gamma}^B_E(s_0, f_0)$ is finite.

Proof: The (1), (2) and (4) items are easy to prove. We will prove only the item (3). Let $b_2 \in [b_1]_N$ and consider an open set V_{b_2} such that $i : \pi_1(V_{b_2}, c_2) \to \pi_1(E, c_2)$ is trivial homomorphism. Now $W_{b_2} = s_0^{-1}(V_{b_2}) \cap f_0(V_{b_2}) \cap U_{b_2}$ where U_{b_2} is connected path neighborhood of b_2. It is immediate to verify that $W_{b_2} \subset [b_1]_N$ so
Theorem 4.3. For the first part we consider the following diagram:

\[\Gamma_E^B(s_0, f_0) \]

Proof: For the first part we consider \(\beta = \beta_{b_1}(2) \ast (\beta_{b_1}(1))^{-1} \). Now \(P_R(b_1, \beta_{b_1}(1)) = [[s_0(\beta_{b_1}(1) \ast f_0(\beta_{b_1}(1)))^{-1}]_A \]
\[= [[s_0(\beta) \ast (s_0(\beta_{b_1}(1) \ast f_0(\beta_{b_1}(1)))^{-1}) \ast f_0(\beta)^{-1}]_A \]
\[= P_R(b_1, \beta_{b_1}(2)) \]

For the second part, if \((b_1, \beta_{b_1}(1)), (b_2, \beta_{b_2}(2)) \in \mathcal{B} \) and \([b_1]_N = [b_2]_N \) on \(\Gamma_E^B(s_0, f_0) \) then there is a path \(\beta_{b_2}(N) \) between \(b_1 \) and \(b_2 \) such that \(f_0(\beta_{b_2}(N)) \) is homotopic to \(s_0(\beta_{b_2}(N)) \) relative to \([0, 1] \). So we have:
\[P_R(b_1, \beta_{b_1}) = [[s_0(\beta_{b_1}) \ast f(\beta_{b_1})^{-1}]_A \]
\[= [[s_0(\beta_{b_1}) \ast s_0(\beta_{b_2}(N)) \ast f(\beta_{b_2}(N))^{-1}]_A \]
\[= [[s_0(\beta_{b_1}) \ast f_0(\beta_{b_2})^{-1}]_A = P_R(b_2, \beta_{b_2}) \]

So \(P_R([b_1]) = P_R(b_1, \beta_{b_1}) \) is a well-defined map as on the commutative diagram and it is easy to see that \(P_R \) is an injection.

\[\square \]

Theorem 4.4. Let \(\Gamma_{E(co)}^{\tilde{E}(co)}(\tilde{s}_0, \tilde{f}_1) \) and \(\Gamma_{E(co)}^{\tilde{E}(co)}(\tilde{s}_0, \tilde{f}_2) \) be the coincidence set for \(\tilde{f}_1, \tilde{f}_2 \in \mathcal{L}(f_0; s_{f_0}) \).

1. If \([\tilde{f}_1]_s = [\tilde{f}_2]_s \) then \(p^{\tilde{E}(co)}(\Gamma_{E(co)}^{\tilde{E}(co)}(\tilde{s}_0, \tilde{f}_1)) = p^{\tilde{E}(co)}(\Gamma_{E(co)}^{\tilde{E}(co)}(\tilde{s}_0, \tilde{f}_2)) \).
2. If $p^{b_0}\left(\Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_1)\right) \cap p^{b_0}\left(\Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_2)\right) \neq \emptyset$ then $[\tilde{f}_1]_{s_0} = [\tilde{f}_2]_{s_0}$.

Proof: (1). Since $[\tilde{f}_1]_{s_0} = [\tilde{f}_2]_{s_0}$ there is $\tilde{b} \in \pi_1(B, b_0)$ which satisfies $T_{\pi_1(\tilde{b})} \circ \tilde{f}_1 = \tilde{f}_2 \circ T_{\tilde{b}}$. If $\tilde{b} \in \left(\Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_1)\right)$ then $\tilde{s}_0(\tilde{b}) = \tilde{f}_1(\tilde{b})$, so we have

$$\tilde{s}_0 \circ T_{\tilde{b}}(\tilde{b}) = T_{\pi_1(\tilde{b})} \circ \tilde{s}_0(\tilde{b}) = T_{\pi_1(\tilde{b})} \circ \tilde{f}_1(\tilde{b}) = \tilde{f}_2 \circ T_{\tilde{b}}(\tilde{b}).$$

Therefore $T_{\tilde{b}}(\tilde{b}) \in \Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_2)$. The verification of the inverse inclusion is analogous. Since $T_{\tilde{b}}$ established an one to one correspondence between $\Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_1)$ and $\Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_2)$ then when we apply p^{b_0} we have

$$p^{b_0}\left(\Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_1)\right) = p^{b_0}\left(\Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_2)\right).$$

Since (3) is equivalent to (2) it is sufficient to prove the item (2). If

$$p^{b_0}\left(\Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_1)\right) \cap p^{b_0}\left(\Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_2)\right) \neq \emptyset,$$

then $\Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_1) \neq \emptyset$ and $\Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_2) \neq \emptyset$. Then there are $\tilde{b}_1 \in \Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_1)$ and $\tilde{b}_2 \in \Gamma^{\tilde{B}(b_0)}_{E(c_0)}(\tilde{s}_0, \tilde{f}_2)$ such that $p^{b_0}(\tilde{b}_1) = p^{b_0}(\tilde{b}_2) := b$. Since the action of the fundamental group $\pi_1(B, b_0)$ on the fibers is transitive, there is $\tilde{b} \in \pi_1(B, b_0)$ such that $T_{\tilde{b}}(\tilde{b}_1) = \tilde{b}_2$ and

$$\tilde{f}_2 \circ T_{\tilde{b}}(\tilde{b}_1) = \tilde{s}_0(\tilde{b}_1) = T_{\pi_1(\tilde{b})} \circ \tilde{s}_0(\tilde{b}_1) = T_{\pi_1(\tilde{b})} \circ \tilde{f}_1(\tilde{b}_1)$$

Since $\tilde{f}_1, \tilde{f}_2 \in \mathcal{L}(f_0; s_{F_0})$ and the coincidence occurs in \tilde{b}_1 it follows that $\tilde{f}_2 \circ T_{\tilde{b}} = T_{\pi_1(\tilde{b})} \circ \tilde{f}_1$ as the bellow diagram. Therefore we have $[\tilde{f}_2]_{s_0} = [\tilde{f}_1]_{s_0}$.

\[\begin{array}{ccc}
(\tilde{B}(b_0), \tilde{b}_2) & \xrightarrow{T_{\tilde{b}}} & (\tilde{E}(c_0), \tilde{e}) \\
\downarrow & & \downarrow \xrightarrow{T_{\pi_1(\tilde{b})}} \\
(\tilde{B}(b_0), \tilde{b}_1) & \xrightarrow{s_{F_0}} & (\tilde{E}(F_0), s_{F_0}(\tilde{b}_1)) \\
\end{array} \]

\[\begin{array}{ccc}
(\tilde{E}(c_0), \tilde{e}) & \xrightarrow{T_{\pi_1(\tilde{b})}} & (\tilde{E}(c_0), \tilde{f}_1(\tilde{b}_1)) \\
\end{array} \]
Theorem 4.4. Let $\Gamma_{E(e_0)}^B(b_0)(\tilde{f}_0, \tilde{s}_1)$ and $\Gamma_{E(e_0)}^B(b_0)(\tilde{f}_0, \tilde{s}_2)$ be the coincidence set for $\tilde{s}_1, \tilde{s}_2 \in \mathcal{L}(s_0; f_{F_0})$.

1. If $[\tilde{s}_1]_{f_0} = [\tilde{s}_2]_{f_0}$ then $p_{b_0}^b(\Gamma_{E(e_0)}^B(b_0)(\tilde{f}_0, \tilde{s}_1)) = p_{b_0}^b(\Gamma_{E(e_0)}^B(b_0)(\tilde{f}_0, \tilde{s}_2))$.

2. If $p_{b_0}^b(\Gamma_{E(e_0)}^B(b_0)(\tilde{f}_0, \tilde{s}_1)) \cap p_{b_0}^b(\Gamma_{E(e_0)}^B(b_0)(\tilde{f}_0, \tilde{s}_2)) \neq \emptyset$ then $[\tilde{s}_1]_{f_0} = [\tilde{s}_2]_{f_0}$.

Now, $[\tilde{s}_1]_{f_0} = [\tilde{s}_2]_L \in R_L(\mathcal{L}(s_0; f_{F_0})$ by theorem 2.9. If $\tilde{s}_1 = T_{\gamma_1} \circ \tilde{s}_0$ and $\tilde{s}_2 = T_{\gamma_2} \circ \tilde{s}_0$ with $\gamma_1, \gamma_2 \in \pi_1(F_0, e_0)$ then, by definition 2.8, we have $[T_{\gamma_1} \circ \tilde{s}_0]_L = [T_{\gamma_2} \circ \tilde{s}_0]_L$ if and only if $[\gamma_1]_A = [\gamma_2]_A \in R_A(s_0, f_0; \pi_1(F_0, e_0))$. From this, it follows the main theorem:

Theorem 4.5. Let $\Gamma_{E(e_0)}^B(b_0)(\tilde{s}_0, \tilde{f}_1)$ and $\Gamma_{E(e_0)}^B(b_0)(\tilde{s}_0, \tilde{f}_2)$ be the coincidence set for $\tilde{f}_1, \tilde{f}_2 \in \mathcal{L}(f_0; s_{F_0})$.

1. There is an one to one correspondence

 $\Psi : R_L(\mathcal{L}(f_0; s_{F_0})) \rightarrow R_A(f_0, s_0; \pi_1(F_0, e_0)).$

2. If $[\tilde{f}_1]_L = [\tilde{f}_2]_L$ then $p_{b_0}^b(\Gamma_{E(e_0)}^B(b_0)(\tilde{s}_0, \tilde{f}_1)) = p_{b_0}^b(\Gamma_{E(e_0)}^B(b_0)(\tilde{s}_0, \tilde{f}_2))$.

3. If $p_{b_0}^b(\Gamma_{E(e_0)}^B(b_0)(\tilde{s}_0, \tilde{f}_1)) \cap p_{b_0}^b(\Gamma_{E(e_0)}^B(b_0)(\tilde{s}_0, \tilde{f}_2)) \neq \emptyset$ then $[\tilde{f}_1]_L = [\tilde{f}_2]_L$.

Remark 4.6. Note that the theorem follows from the theorems 2.1 and 4.3, and is true if we replace f_0, f_1, f_2 by $s_0, \tilde{s}_1, \tilde{s}_2$ and s_{F_0} by f_{F_0}.

References

Reidemeister Classes for Coincidences Between Sections of a Fiber Bundle

Dirceu Penteado,
Departamento de Matemática
Universidade Federal de São Carlos
Brazil.
E-mail address: dirceu@dm.ufscar.br

and

Thales Fernando Vilamaior Paiva,
Universidade Federal Mato Grosso do Sul
CPAg
Brazil.
E-mail address: thales.paiva@ufms.br